Utilization of Bacterial Foraging Algorithm for Optimization of Boost Inverter Parameters

نویسنده

  • G. Arunkumar
چکیده

This paper proposes a boost inverter model capable of coping with changes in load as well as line parameters. In order to achieve an output AC voltage higher than the input DC voltage, we can use this model consisting of a pair of DC-DC converters with a load connected differentially across them. This paper aims at developing a boost inverter that is capable of achieving a very high gain, to obtain an AC voltage of 110 Vrms from a DC input of 36 V. This is exceptionally beneficial in renewable energy applications, where the input voltage garnered is quite small, and in need of stepping up for commercial use or transmission. However, aside from the voltage level itself, lowering the rise time, settling time, peak overshoot and steady state error of the system is of cardinal importance in order to maintain a reliable output voltage. Closed loop control of the differentially connected DC-DC converters is necessary to determine the optimal stable operating point. This paper addresses the above concerns through optimization of the proportional and integral constants using the novel Bacterial Foraging Algorithm, ensuring operation at the required optimal stable operating point. Moreover, load/line disturbances may occur due to which the stability of output voltage may be compromised and THD value may increase to undesirable extents. In these cases, utilization of the output voltage is no longer viable for several applications sensitive to such voltage fluctuations. We have demonstrated that our proposed model is capable of restoring/reverting to the satisfactory sinusoidal waveform fashion within a single voltage cycle. The waveform results that demonstrate the resilience of our model to such disturbances are represented appropriately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Optimization of the Lyapunov Based Nonlinear Controller Parameters in a Single-Phase Grid-Connected Inverter

In this paper, optimization of the backstepping controller parameters in a grid-connected single-phase inverter is studied using Imperialist competitive algorithm (ICA), Genetic Algorithm (GA) and Particle swarm optimization (PSO) algorithm. The controller is developed for the system based on state-space averaged model. By selection of a suitable Lyapunov function, stability of the proposed con...

متن کامل

Sub-transmission sub-station expansion planning based on bacterial foraging optimization algorithm

In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future load demand. The large number of design variables and combination of discr...

متن کامل

Z- Source Inverter Based On Sample Boost Optimized With Particle Swarm Optimization (PSO) Algorithm

In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016